106 research outputs found

    Automated Calculation of Thermal Rate Coefficients using Ring Polymer Molecular Dynamics and Machine-Learning Interatomic Potentials with Active Learning

    Full text link
    We propose a methodology for fully automated calculation of thermal rate coefficients of gas phase chemical reactions, which is based on combining the ring polymer molecular dynamics (RPMD) with the machine-learning interatomic potentials actively learning on-the-fly. Based on the original computational procedure implemented in the RPMDrate code, our methodology gradually and automatically constructs the potential energy surfaces (PESs) from scratch with the data set points being selected and accumulated during the RPMDrate simulation. Such an approach ensures that our final machine-learning model provides reliable description of the PES which avoids artifacts during exploration of the phase space by RPMD trajectories. We tested our methodology on two representative thermally activated chemical reactions studied recently by RPMDrate at temperatures within the interval of 300--1000~K. The corresponding PESs were generated by fitting to only a few thousands automatically generated structures (less than 5000) while the RPMD rate coefficients retained the deviation from the reference values within the typical convergence error of RPMDrate. In future, we plan to apply our methodology to chemical reactions which proceed via complex-formation thus providing a completely general tool for calculating RPMD thermal rate coefficients for any polyatomic gas phase chemical reaction

    Efficient machine-learning based interatomic potentialsfor exploring thermal conductivity in two-dimensional materials

    Get PDF
    It is well-known that the calculation of thermal conductivity using classical molecular dynamics (MD) simulations strongly depends on the choice of the appropriate interatomic potentials. As proven for the case of graphene, while most of the available interatomic potentials estimate the structural and elastic constants with high accuracy, when employed to predict the lattice thermal conductivity they however lead to a variation of predictions by one order of magnitude. Here we present our results on using machine-learning interatomic potentials (MLIPs) passively fitted to computationally inexpensive ab-initio molecular dynamics trajectories without any tuning or optimizing of hyperparameters. These first-attempt potentials could reproduce the phononic properties of different two-dimensional (2D) materials obtained using density functional theory (DFT) simulations. To illustrate the efficiency of the trained MLIPs, we consider polyaniline CN nanosheets. CN monolayer was selected because the classical MD and different first-principles results contradict each other, resulting in a scientific dilemma. It is shown that the predicted thermal conductivity of 418 ± 20 W mK for CN monolayer by the non-equilibrium MD simulations on the basis of a first-attempt MLIP evidences an improved accuracy when compared with the commonly employed MD models. Moreover, MLIP-based prediction can be considered as a solution to the debated reports in the literature. This study highlights that passively fitted MLIPs can be effectively employed as versatile and efficient tools to obtain accurate estimations of thermal conductivities of complex materials using classical MD simulations. In response to remarkable growth of 2D materials family, the devised modeling methodology could play a fundamental role to predict the thermal conductivity

    Exploring Phononic Properties of Two-Dimensional Materials using Machine Learning Interatomic Potentials

    Get PDF
    Phononic properties are commonly studied by calculating force constants using the density functional theory (DFT) simulations. Although DFT simulations offer accurate estimations of phonon dispersion relations or thermal properties, but for low-symmetry and nanoporous structures the computational cost quickly becomes very demanding. Moreover, the computational setups may yield nonphysical imaginary frequencies in the phonon dispersion curves, impeding the assessment of phononic properties and the dynamical stability of the considered system. Here, we compute phonon dispersion relations and examine the dynamical stability of a large ensemble of novel materials and compositions. We propose a fast and convenient alternative to DFT simulations which derived from machine-learning interatomic potentials passively trained over computationally efficient ab-initio molecular dynamics trajectories. Our results for diverse two-dimensional (2D) nanomaterials confirm that the proposed computational strategy can reproduce fundamental thermal properties in close agreement with those obtained via the DFT approach. The presented method offers a stable, efficient, and convenient solution for the examination of dynamical stability and exploring the phononic properties of low-symmetry and porous 2D materials

    Precision Gauge Unification from Extra Yukawa Couplings

    Full text link
    We investigate the impact of extra vector-like GUT multiplets on the predicted value of the strong coupling. We find in particular that Yukawa couplings between such extra multiplets and the MSSM Higgs doublets can resolve the familiar two-loop discrepancy between the SUSY GUT prediction and the measured value of alpha_3. Our analysis highlights the advantages of the holomorphic scheme, where the perturbative running of gauge couplings is saturated at one loop and further corrections are conveniently described in terms of wavefunction renormalization factors. If the gauge couplings as well as the extra Yukawas are of O(1) at the unification scale, the relevant two-loop correction can be obtained analytically. However, the effect persists also in the weakly-coupled domain, where possible non-perturbative corrections at the GUT scale are under better control.Comment: 26 pages, LaTeX. v6: Important early reference adde

    Exploring van der Waals materials with high anisotropy: geometrical and optical approaches

    Full text link
    The emergence of van der Waals (vdW) materials resulted in the discovery of their giant optical, mechanical, and electronic anisotropic properties, immediately enabling countless novel phenomena and applications. Such success inspired an intensive search for the highest possible anisotropic properties among vdW materials. Furthermore, the identification of the most promising among the huge family of vdW materials is a challenging quest requiring innovative approaches. Here, we suggest an easy-to-use method for such a survey based on the crystallographic geometrical perspective of vdW materials followed by their optical characterization. Using our approach, we found As2S3 as a highly anisotropic vdW material. It demonstrates rare giant in-plane optical anisotropy, high refractive index and transparency in the visible range, overcoming the century-long record set by rutile. Given these benefits, As2S3 opens a pathway towards next-generation nanophotonics as demonstrated by an ultrathin true zero-order quarter-waveplate that combines classical and the Fabry-Perot optical phase accumulations. Hence, our approach provides an effective and easy-to-use method to find vdW materials with the utmost anisotropic properties.Comment: 11 pages, 5 figure
    corecore